Math 53 Discussion Problems Nov 21

1. Use Green's Theorem to evaluate the following line integrals.
(a) $\oint_{C} 3 y d x+2 x d y$, where C is the boundary of the region defined by $0 \leq x \leq \pi, 0 \leq y \leq \sin x$, oriented positively
(b) $\oint_{C}(6 y+x) d x+(y+2 x) d y$, where C is the circle $(x-2)^{2}+(y-3)^{2}=$ 4, oriented clockwisely
(c) $\oint_{C} \tan ^{-1}\left(\frac{y}{x}\right) d x+\ln \left(x^{2}+y^{2}\right) d y$, where C is the boundary of the region defined in polar coordinates by $1 \leq r \leq 2,0 \leq \theta \leq \pi$, oriented positively
2. Use Green's Theorem to find the area under an arch of the cycloid $x=t-\sin t, y=1-\cos t$
3. Let C be the boundary of a region R in the $x y$-plane, oriented positively. Show that the moment of inertia of R about the y-axis equals to $\frac{1}{4} \oint_{C} x^{3} d y-x^{2} y d x$
